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Sem2Vec: Semantic Word Vectors with
Bidirectional Constraint Propagations
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Abstract—Word embeddings learn a vector representation of words, which can be utilized in a large number of natural language
processing applications. Learning these vectors shares the drawback of unsupervised learning: representations are not specialized for
semantic tasks. In this work, we propose a full-fledged formulation to effectively learn semantically specialized word vectors (Sem2Vec)
by creating shared representations of online lexical sources such as Thesaurus and lexical dictionaries. These shared representations
are treated as semantic constraints for learning the word embeddings. Our methodology addresses size limitation and weak
informativeness of these lexical sources by employing a bidirectional constraint propagation step. Unlike raw unsupervised embeddings
that exhibit low stability and easily subject to changes under randomness, our semantic formulation learns word vectors that are quite
stable. An extensive empirical evaluation on the word similarity task comprised of eleven word similarity datasets is provided where our
vectors suggest notable performance gains over state of the art competitors. We further demonstrate the merits of our formulation in
document text classification task over large collections of documents.

Index Terms—Word Embeddings, Semantic Embeddings, Embedding Stability, Thesaurus, Constraint Propagation
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1 INTRODUCTION

Along with the development of modern computational
devices, the amount of digitalized data is increasing fast-
paced. The improvements of the electronic storage and
processing technology has increased our capacity to collect,
create, filter and distribute more and more information.
Nevertheless, the price to pay for this accumulation is the
information overload [1], the difficulty of analyzing and
interpreting the vast amount of data and making effective
long-term decisions. Therefore, the development of sophis-
ticated natural language tools is indispensable to overcome
this overload and enable easier decision making.

Document classification is an excellent example for il-
lustrating the information overload in which the task is to
categorize documents into a predefined set of labels given a
large collection of documents. Considering the size of doc-
ument collection, employing human labour for answering
these questions is mostly daunting, exhaustive and highly
inefficient. Combatting aforementioned information inten-
sive tasks using computational methodologies requires the
development of word representations. Traditional natural
language processing was centered around naive, frequency
based features to represent the words [2]. Nevertheless,
these models are primitive and do not generalize to many
lingual tasks due to their simple counting based nature. The
main drawback of these frequency based features is that
they do not consider the context of words explicitly. The
importance and necessity of considering the context were
introduced with the notion of the Distributional Hypothesis
[3] [4] which claims that words mostly acquire their mean-
ings through the context they are used in. Foundation of
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this hypothesis provided a formal ground to learn novel
representations that do more than simple counting and
addressed the contextual cues as well. A stream of unsu-
pervised techniques that learn the cooccurrence statistics
of the data was developed. Word embedding approaches
(a.k.a. vector space learning) [5] are such techniques which
representations of words are optimized such that these
words and their context words are located nearby in the
embedding space. Rather than simple counting arguments,
these approaches incorporate learning the words and their
contexts from the corpora and generalize significantly better
than their traditional frequency features. They not only dis-
cover intrinsic aspects and variations of the underlying data
at hand but also allow variations in the optimization, and
embedding prior knowledge. Recent studies have shown
that the resulting word vectors are usable for a diverse set of
natural language applications. They yield substantial repre-
sentation power and proven to be much more successful in
many lingual tasks than the frequency representations [6].

The optimization of word embedding vectors is usually
performed on large unstructured corpora. An efficient word
embedding algorithm is expected to learn the structure and
regularities in the language without any further guidance
from experts. Unfortunately, these algorithms share the
common drawback of unsupervised learning: the learned
embeddings are not necessarily optimized for the subse-
quent predictive task [7]. Generally speaking, when one
wishes to optimize the vectors for a semantic task of interest,
the Distributional Hypothesis is insufficient [8]. Words oc-
curring in similar contexts may exhibit weak or no semantic
relevance, and the learned vectors do not necessarily encode
features that capture semantic similarities [9]. These limita-
tions naturally ask for the development of novel learning
methodologies whilst keeping the prominent benefits of the
unsupervised learning.

Many formulations have been proposed to tackle this
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problem. Incorporation of knowledge graphs [10] to the
embedding network, augmenting the objective with extra
relatedness annotations [11], and the extraction of word
senses from lexical dictionaries [12] are solutions to embed
these general purpose vectors to a semantic space. The
work in [13] constructs an unsupervised random field over
the semantic associations to retrofit (post-process) the word
vectors. These works jointly learn embeddings, given a
knowledge source, and they show improvements over un-
supervised, raw embeddings. Nevertheless, the utilization
of semantic sources is not straightforward. Each semantic
source has a degree of semantic relevance to the task, and
usually, sources with high semantic relevance are scarce.
Addressing these points require the design of novel unsu-
pervised objectives that exploit auxiliary semantic content.

In this work, we propose a novel approach to address
the aforementioned issues and effectively learn embeddings
with semantic specialization. Briefly, the main contributions
of this paper are:

e We adopt the view that each lexical source exhibits
a different degree of semantic relevance. Thus, we
create a shared representation of Thesaurus and on-
line lexical dictionaries, and then fuse their content
into the learning. This is done by introducing them
as semantic constraints with varying strengths called
heavy and light constraints, in order to restrict the
original embedding problem.

o We introduce a bidirectional propagation technique
over constraint sets where 1) bottom up propagations
increase the number of heavy constraints 2) top
down propagations improve the overall reliability
of light constraints. This strategy constructs a well-
behaving objective for learning semantically special-
ized embeddings. The full pipeline of our learning
methodology is visually illustrated in Figure 1.

o Itis difficult to train embeddings that take long range
dependencies into account. Unsupervised embed-
dings are known to be highly unstable when trained
under large window sizes. Compared to the original
embedding problem, embeddings trained with our
semantic constraints yield quite stabilized solutions
for all query sets.

o Our empirical findings suggest significant improve-
ments on semantic tasks. More precisely, we measure
the word similarity performance on a wide set of
word embedding baselines using a test collection of
eleven datasets. The weighted average of Spearman
correlation score shows a 4.3% improvement upon
the state of the art solutions. When embeddings are
trained on a smaller subset of Wikipedia 2017, the
improvement over the competitors is even 7.4%. Al-
though semantic vectors were not specifically trained
for optimizing a document classification objective,
we further evaluate our vectors on the text doc-
ument classification, and obtain noticeable perfor-
mance gain in multi-class classification tasks.

The rest of this paper is structured as follows: in Sec-
tion 2, we first detail the limitations of the distributional
hypothesis for specializing to semantics, and then explain
our pipeline of learning semantic embeddings. In Section

2

3, we provide our experimental setup, model selection rou-
tines, followed by stability and quantitative results on the
evaluation tasks. In Section 4, we conclude our work and
provide discussions.

2 SEMANTIC WORD VECTORS WITH BIDIREC-
TIONAL CONSTRAINT PROPAGATIONS

In this section, we introduce the preliminary word-context
learning problem, followed by construction of our heavy
and light constraints. We then conclude by detailing our
bidirectional constraint propagations.

2.1 Word Vector Models

A large set of word embedding approaches use the follow-
ing generalized objective function:

J(w,e) = L(w,c) — Z Lw,en) 1)

cNEVL

where w is a target word in vocabulary V,,,, and cis a context
word in a vocabulary set V.. Further we define W and ¢
as the vector representations of w and c, respectively. Then
l(w,c) = log {1 + exp(—wTé)

tion. The first logistic loss term in the objective penalizes
the dissimilarity of W and €. The second term normalizes
the first quantity by making comparisons over different
contexts. In practice, evaluating the normalization over all
possible contexts is impractical, usually manageable sized
approximations have resorted.

Skip Gram approximation [14], approximates the second
term of this objective function by randomly sampling some
negative context ¢y which are forced to have a vector €y
that is most dissimilar to w. The total loss over the corpus
is then simply the sum of ii.d. (w,c) word context pairs.
Without loss of generality, this objective is an application of
the distributional hypothesis: if a word w occurs together
with context ¢, they should have similar vectors. This re-
lation gets stronger if they co-occur more in the observed
corpus.

) is the logistic loss func-

2.2 Semantic Word Vector Specializations

Learning embeddings using Equation 1 attained reasonable
success for the general tasks. However, when we want
to specialize embeddings for semantic relations, we notice
several problems with this approach. First, it is unlikely to
observe a word and its semantic partner (e.g. its hypernym,
hyponym or synonym) together in a local window. The
semantic partner usually occurs with it usually only through
long-range dependencies [15]. The second difficulty is that
unsupervised objective has no preference over any pairs.
Without explicitly telling the model which loss pairs are
semantically valuable, most of the loss pairs are those that
do not necessarily have strong semantic informativeness.
For instance, consider the sentence: “my dog is cute but
aggressive, and likes to eat high quality food”. According to
the Distributional Hypothesis, the meaning of dog and sur-
rounding words like aggressive, is should be closer to dog
since they occur in close context. Although this argument
is partially true, the semantic relation between dog and food

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2942021, IEEE

Transactions on Knowledge and Data Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Informativeness

ITCONSTRAINT PROPAGATIONS ||
PAIR GENERATION>|
| Thesaurus — |

< Data availability > !____

I

= =

Dictionary |
Pairs |

Pairs

I
Word Context |f::>
Pairs| |

Fig. 1: Our proposed word embedding pipeline (best viewed in color). We first generate various levels of word context pairs
using a triplet of sources: unsupervised corpora, lexical dictionaries and Thesaurus. We then treat upper lexical sources
as optimization constraints and perform bidirectional propagations between the constraint sets to maximize the learning
efficiency. Our final word embeddings are highly suited for semantic tasks.

gets weaker due to being far away, or even lost after long-
ranges.

These two problems arising from the hypothesis can be
addressed by designing an objective function, such that it
weights semantically valuable pairs heavier than the rest.
This is possible by leveraging auxiliary semantic informa-
tion that specifies feasible regions of the objective function in
Equation 1. But which pairs are more semantically valuable?
From a computational linguistics point of view [16], seman-
tic value is understood via the concept of Information Content
which suggests that general entities present less information
than the more specialized entities and relations. In other
words, abstract relations of semantics has high information
content whereas raw cooccurrences provide significantly
less amount of semantic content.

Consider the relations of two words w and c. These
words can cooccur in a domain such as raw noisy corpora,
a dictionary, or in a thesaurus. As information content
suggests, these relations differ in their semantic abstraction
level: there is a clear distinction between the raw text co-
occurrence relation and a dictionary sense relation, the latter
being a stronger one.

Lexical Dictionary. The lexical dictionary is a rich source
containing sense definitions of the words where one can ex-
tract significant clues what the meaning of the word is with
respect to other words. For example, consider the definition
of word tower in Table 1. There are commonalities across the
definitions of the same word. For our purposes, we extract
all word-context pairs from the dictionary definitions and
denote an extracted elements as sense pairs. Let D be the
dictionary. We formulate a sense pair as a constraint to the
semantic similarity of (w, c). We penalize the dissimilarity
of W and € under the logistic loss, and form a constraint
(¢(w,c) < 7) Ip(w, ¢). We then use standard Karush Kuhn
Tucker (KKT) conditions [17] to treat this dictionary con-
straint as an objective term:

JD(w’C) = (e(wvc)]]-D(wac)) (2)

where 7 disappeared since it neither depends on w nor c.

TABLE 1: Dictionary and Thesaurus content for the query
word tower.

Source Content

Dict ! a building or structure high in proportion to its
lateral dimensions, either isolated or forming
part of a building.

Dict 2 A tower is a tall, narrow building, that either

stands alone or forms part of another building
such as a church or castle.

Thesaurus > belfry - castle - citadel - column - fort - fortifi-
cation - fortress - keep - lookout ...

1 http://www.dictionary.com 2 http:/ /en.oxforddictionaries.com © http:/ /www.thesaurus.com

Here, 1p(w, ¢) is the dictionary indicator function:

(w,c) € D

1
1 ,¢) =
p(w,¢) {0 otherwise

for the cooccurence of (w,c) in dictionary set D. Since
dictionary pairs are considered as constraints to raw cooc-
currences: we call Jp (w, ¢) as the light constraint objective.

Thesaurus. Thesaurus is a reference source where a
word is explained in a concise manner using a small subset
of related words. In contrast to a dictionary, thesaurus does
not treat words in alphabetic order. Also, dictionary defini-
tions can contain syntactic or semantic relevance, yet The-
saurus only accounts for semantic relations. These relations
are very abstract and may contain synonyms and antonyms.
The pure semantic nature of the Thesaurus means that pairs
generated from it have higher information content than
dictionary pairs. For the word tower the last row of Table
1 shows the query result from a thesaurus. We see that the
Thesaurus definition of tower is much condensed compared
to dictionary content, and mostly includes concrete building
objects having structural similarities.

Similarly to the dictionary definitions, we extract pairs
and denote T as the set of Thesaurus pairs to further
constrain the embedding problem. That is we penalize the
dissimilarity under the logistic loss and form the heavy
constraint ({(w,c) < k) 1p(w, c) and use it in the objective
term through the Thesaurus:

Jr(w,¢) = (U(w, ¢)Lr(w,c)) 3

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


http://www.dictionary.com
http://en.oxforddictionaries.com
http://www.thesaurus.com

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2942021, IEEE

Transactions on Knowledge and Data Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

where 1t (w,c) is the indicator function for the constraint
pair in Thesaurus T. Here we denote constraint pairs in
Jr(w, ¢) as heavy constraints meaning that they have to be
strongly satisfied during the optimization.

Since Thesaurus content is semantically more informa-
tive than lexical dictionary content, the reader may question
why hard optimization constraints with equality conditions
are not employed in our formulation. Such hard-constraint
strategies introduce problematic issues when we have hun-
dred thousands of constraints in the learning problem. The
probability of constraint violation, and yielding an infeasible
problem gets higher with a large set of hard constraints.
Furthermore, we do not specifically require hard constraints
since we don’t want words to be identical to their synonym:s.
This is because there are already nuances between differ-
ent synonyms of a particular word because only a subset
of synonyms can be substituted for a word in a context
[18]. Thus, our heavy constraints are still mathematically
soft constraints like light constraints, and can still preserve
nuances of synonyms, rather than removing them.

2.3 Bidirectional Constraint Propagations

In the last subsection, we constructed light constraints from
the lexical dictionary and heavy constraints from a The-
saurus source. These constraints restrict the maximization
of the objective function over a subspace that semantic
relations hold. Unfortunately, sets with high information
content are very much limited in size as Figure 1 demon-
strates. On the other hand, dictionary pairs are relatively
less informative but potentially yield to an order of mag-
nitude more constraints. The main idea in this subsection
is that these two lexical sources can mutually benefit from
each other. Promoting reliable sense pairs can increase the
number of heavy constraints and Thesaurus can create some
new constraints for the dictionary to increase its average
informativeness. For promoting a light constraint to heavy,
we define two rules:

o definitional symmetry. The dictionary sense definition
pair is denoted as symmetric if (w,c) € D, and
(c,w) € D. This indicates a very strong semantic
relation, and we promote this pair to be an element
of T.

o expert agreement. Assume we have d dictionaries col-
lected from independent sources representing our
large dictionary set D = {D;, Dy, ..Dg}. If the defi-
nition of word w contains ¢ in multiple dictionaries,
then (w, ¢) pair is an expert sense. According to this
rule, the word tower in Table 1 has building in its
definition across multiple dictionaries. Hence, fower-
building is an expert agreed sense. We augment T
with these pairs.

In the next step, we query elements of T and stochasti-
cally apply semantic association rules to form new pairs.
While there exists ontology knowledge based association
rule techniques [19], we adopt a low complexity association
rule that is if a pair (wy,c) are (ws,c) both in T, we then
create (wy,ws) pair and add it to the set D. We perform
these associations for a tiny number of KNN neighbourhood
and increase the average information content of the light
constraint set.

2.4 Generalized Negative Sampling

Our learning step is similar to the way a majority of the
embedding methods are trained [20], [21], [22]. We adopt
Negative Sampling formulation in which a noise distri-
bution generates random word context pairs, denoted as
negative samples. In this manner, the learning consists of
discriminating between positive word-context pairs and
negative pairs. Negative sampling contribution term is:

In(w) = Z l(w,en)

cneV,

where ¢y is a random context word sampled from the
negative distribution. In the standard negative sampling,
there is a probability that all word context samples can be
negative samples. However, we must ensure that random
contexts are guaranteed to be negative samples. In other
words, we must ensure that w and ¢y are not related. Since
we know that pairs obtained from T and D are strongly
related, there is still a non-zero probability to sample such
pair. To circumvent this issue, we perform Generalized
Negative Sampling and do not negative sample a context
word if the pair is in the lexical sources:

In(w) = Zﬁ(w,cN) 4)
cNEVL
(w,en)€T,(w,en ) €D

This generalized sampling strategy discards a small fraction
of the negative samples® from the objective but we have
experimentally found out that it yields better learning. Our
final objective function is the sum of the pair loss, Jy, Jr
and Jp:

J(w,c) = l(w,c) + ApJr(w, c) + ApJdp(w, ¢) — In(w) (5)

Practically, we distinguish between our two soft con-
straint sets by using At such that Ax > Ap holds for
any case. We then obtain the global objective by simply
summing over all i.i.d (w, ¢) pairs in the corpus.

3 EXPERIMENTAL RESULTS

We train our embedding models using the latest Wikipedia
2017 July snapshot containing 4.5B tokens. We extract the
vocabulary from the corpus which gives us approximately
a vocabulary of 2.3M words. Our corpus processing follows
the state of the art practices for Wikipedia which we use
the standard preprocessing scripts and remove XML and
HTML tags to obtain the raw text [23]. For a fair evaluation,
all common embedding training parameters are set as in
[24], where we remove words that occur less than 5 times,
set the window size to 5, number of negative samples to 5,
and the corpus is processed for 5 epochs. The initial learning
rate is set to the same value for the methods and Stochastic
Gradient Descent is used as the optimization algorithm.

We use the publicly available Cambridge, Oxford,
Collins, Dictionary.com and Longman English dictionaries
to obtain word definitions. We crawl each dictionary with
web requests and parse the HTML contents using regular
expressions to get word definitions from Cambridge, Ox-
ford, Collins, Dictionary.com. Unlike other dictionaries, the

4. Normalization by the number of negative samples is usually
employed in Jy (w), which is omitted here for notational convenience.
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Fig. 2: Kernel Density Estimate fits to inner products for SG (base) and our model. x-axis is the inner product value and
y-axis is the density estimate. Fits to the inner product for the a) symmetry pairs b) expert pairs and c) association pairs
d) distribution for an aggregation of these constraints. Learning with our model corrects the inherent skew, and yields a

Gaussian-peaked concentration for the inner products.

Longman Dictionary provides an Application Programming
Interface allowing to directly get the word definitions. The
definition texts are preprocessed similarly to the input cor-
pus such that only alphanumeric characters are present.
For obtaining more informative pairs, we reduce the re-
dundancy by removing the stop-words from dictionary
definitions. After collection of all definitions from all dic-
tionaries, as the purpose is not word sense disambiguation,
we concatenate all senses into a single list. For a Thesaurus
source, we crawl the contents of Online Thesaurus® where
each word is provided a list of synonyms. After the initial
construction of our heavy and light objective terms using
pairs from our sources, we apply the bidirectional constraint
propagations.

Our performance benchmark includes comparison of the
following word embedding architectures:

e Skip Gram (SG) [23]: The vanilla baseline using Skip
Gram architecture of Word2Vec which word vectors
are trained by predicting the context word from a
target word of a sentence. Default parameters are
used.

o Continuous Bag of Words (CBoW) [14]: state of the
art architecture representing the context vectors as
the bag of words around the target word. This archi-
tecture is faster to train than SG, and competitive to
beat in large scale datasets.

e Dict2Vec (D2V) [12]: embedding architecture that
uses dictionary definitions. As their approach re-
quires a preliminary training step of word embed-
dings, we first pretrain the embeddings to obtain
initial vectors. We then follow the necessary steps:
use pretrained vectors to specify and promote the

5. http:/ /www.thesaurus.com

constraint pairs and set parameters to the best re-
ported results.

o FastText (FT) [24]: embedding architecture in which
each word is represented as a bag of character N-
grams. This is one more extra layer of word repre-
sentation where vectors enjoy the additional shared
knowledge of N-Grams. For parameter specification,
we use the default suggested settings for their bucket
length, N-Gram sizes and update rates.

o Ours (S2V). After creation of Dictionary and The-
saurus collections, we perform Bidirectional Con-
straint Propagations to extend our constraint sets.
To achieve an efficient hyperparameter optimization
for Ap and At, we apply a guided parameter sweep
(grid search) algorithm and use the same hyperpa-
rameters during different experiments.

3.1 Quantitative Results

To measure how these word pairs are affected when we
apply our model, we fit a Kernel Density Estimate to the co-
sine distances of pairs for symmetry, expert, association and
depict the results in Figure 2. Satisfying our expectations,
learning with our model causes all densities to undergo a
mean shift and yield a higher average inner product. The
density shift is relatively larger in expert pairs compared
to symmetry and associations, suggesting that the expert
agreement has the strongest impact on our constraints.
Furthermore, observe that original densities for these word
pairs are right (positive) skewed. This is logical when there
is no prior knowledge available for semantics, most of the
pairs are tend to have low cosine similarity. Learning with
our model corrects the inherent skew, and yields a Gaussian-
peaked concentration for inner products.
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Fig. 3: Log Likelihood landscapes for {Ar,Ap} where a) No Propagations are applied b) Bidirectional Constraint
Propagations are applied. In both cases, the optimization landscape has a global minima. Constraint Propagations increase
the smoothness of the optimization landscape and causes contour edges to yield smoother transitions. This smooth and
well-behaving property suggests that optimization for such an objective landscape is easier.

Some random pairs obtained from our bidirectional
propagation step are shown in Table 2. Symmetry and ex-
pert agreement pairs highlight strong semantic relevancies.
As there seems to be a low deviation in the conveyed
meaning for some of these pairs, arguably, these can even be
used as meaning-preserving substitutes for training a lexical
substitution system (e.g. “examination-test”, “forbidden-
taboo”). Unlike symmetry and expert pairs, association
pairs instead depict gripping cases. We observe that associa-
tions are effective at highlighting particular lost dimensions
of word meanings. For instance, some generated pairs like
”science-aesthetic” which captures a usually omitted dimen-
sion of the word science, suggests that “science” is not only
functional but also contains an aesthetics regard. Associa-
tions can also generate real concepts that word embedding
model does not explicitly address. “international-alphabet”
pair in Table 2 is such an example depicting how simple
associations on word pairs can also point to phrasal con-
cepts such as the Phonetic Alphabet. Note that such phrasal
concepts can only be included in the vocabulary after a
stage of word to phrase modeling [25]. Associations in our
model in some sense implicitly form these links to further
tune word level embeddings and circumvents phrase-word
conversation problem. Compared to symmetry and expert
relations, associations introduce potentially valuable seman-
tics that we do not observe in the corpus and corrects some
amount of lost information due to the imprecise modelling.

3.2 Model Selection

For model selection purposes, we analyze the likelihood of
multiple instances of our model. We form a large validation
set containing millions of words and then evaluate the pre-
dictive likelihood of each model instance on this set. Since
exact computation is not feasible, similarly to stochastic
computations in [26], we compute a stochastic likelihood
with sampling few context words around the target word
and randomly perform multiple repetitions.

Figure 3a and Figure 3b depicts the likelihood LL con-
tours over the {\r, Ap} grid without and with Constraint
Propagations. We observe landscapes exhibit a unique max-
imum on both settings. The figure shows that an advantage
of Constraint Propagations is increasing the smoothness of

TABLE 2: Example word pairs from propagation sets.

Symmetry Expert Association
coal-fuel forbidden-taboo time-atomic
examination-test hit-serve abroad-disperse
gold-jewellery crack-open natural-harmony

microscobic-small
existence-produce
disrupt-prevent
cave-hill
pond-water
fall-shower
cache-hidden

carry-serve
medicine-surgery
address-addressed
break-disrupt
short-summary
box-wagon
college-institution

society-tandem
art-witchcraft
black-gathering
science-aesthetic
dignity-quality
international-alphabet
language-grammatical

the optimization landscape in which contour edges yield
smoother transitions. This means for any optimization algo-
rithm, it is faster to discover a better maximum when new
constraints are formed using these propagation rules.

In particular, the slope of the contours also shows that
heavy constraints of Thesaurus are much more informa-
tive compared to the ones obtained from Dictionaries. The
orientation of the contours suggests that there is a linear
relationship between At and Ap, which can be interpreted
as the relative weighting of these sources. This is a remark-
able observation which can drive efficient data-collection for
learning word embeddings. Grounding on our embedding
model for learning semantics, we observe that one The-
saurus is able to minimize the Log Likelihood similarly to
ten dictionaries.

3.3 Embedding Stability

In this section, we want to measure the stabilization effects
of using our embedding technique. To be able to capture
long-range dependencies of word cooccurrences, large win-
dow sizes have to be used [15]. Nevertheless, experimental
evidence [27] shows that embeddings obtained from such
training conditions are shown to be highly unstable. To
understand the behavior of the models, we simply train
multiple randomly initialized embeddings and check how
the nearest neighbors of the query words are subject to
variations. We first train multiple random embeddings and
store the nearest neighbors of query words using cosine
similarity. Then, similarly to [28] we use a stability measure
based on the Jaccard Index for comparing the similarity
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Fig. 4: Jaccard Stability Index on different query inventories. Base means having no semantic constraints. Despite the
traditional approach, the stability does not detoriate with our approach. The embeddings yields to be highly stable
especially for the large window sizes.

TABLE 3: Word Similarity performances of embeddings trained on first 50 Million words, and the Full version of Wikipedia
2017. We report Spearman’s Correlation Coefficient measure.

Wiki50M Wiki50M+
SG CBoW D2V FT Ours SG CBoW D2V FT  Owurs
MC-30 69.9 64.2 745 741 720 76.7 72.9 753 785 776
MEN 69.5 65.3 711 704 721 717 66.7 720 721 723

MTurk-287 654 65.5 66.6 660 685 65.6 65.3 66.6 676 68.0
MTurk-771 614 56.3 656 599 702 647 60.9 67.6 645 70.9

RG-65 70.0 67.5 76.8 699 80.6 80.3 75.3 82.0 780 83.9
RW 409 31.2 434 449 49.2 469 40.4 479 49.1 509
SimVerb 20.8 15.5 298 19.7 43.5 30.0 234 357 28,6 47.1
WS 69.9 62.7 742 672 716 722 64.1 73.6 683 727
WSR 64.6 55.7 679 629 615 65.6 56.3 673 633 635
WSS 75.6 68.6 778 724 779 778 71.1 780 752 789
YP-130 39.8 32.5 56.0 463 67.5 547 47.2 587 59.1 67.6
W. Average 46.9 41.1 517 474 579 524 46.5 549 523 59.7
WikiFull WikiFull+

SG CBoW D2V FT Ours SG CBoW D2V FT  Ours
MC-30 78.6 66.4 785 734 79.6 79.3 76.0 782 779 793
MEN 71.3 67.1 726 715 745 725 68.7 720 744 753

MTurk-287  65.4 65.5 648 672 665 64.0 63.9 642 691 66.7
MTurk-771  61.7 57.2 662 601 732 647 60.1 675 681 742

RG-65 74.6 70.9 792 697 836 79.1 77.5 812 799 85.6
RW 43.1 374 458 465 53.1 476 43.5 492 545 53.6
SimVerb 20.9 15.7 296 190 436 267 23.0 33.7 357 468
WS 70.3 62.7 729 672 742 710 63.1 732 714 732
WSR 63.9 55.8 662 621 663 649 56.3 654 657 64.6
WSS 76.4 69.6 782 721 80.8 769 70.2 783 765 799
YP-130 33.2 243 50.7 465 681 475 40.2 573 633 69.2

W. Average 47.9 42.8 524 478 598 515 47.4 544 569 612
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and diversity of sample sets. The index is defined as the
size of the intersection divided by the size of the union
of the sample sets: J(A, B) = I‘:Dgi where A and B are
embedding sets for a set of word queries. For query sets, we
use word similarity datasets as well as the recently proposed
Sch dataset of [29], which is calibrated well according to
word frequencies, and also considers parts-of-speech and
abstractness of words into account.

Figure 4 depicts the mean and the variance of the Jaccard
Index for each query inventory. The stability significantly
deteriorates on large window sizes with the typical em-
bedding learning approach. The mean deterioration trend
is mostly linear for RW and Sch datasets, and variances
are comparably similar. Our approach does not deterio-
rate on large window sizes, instead yields increased sta-
bility. The stability results strongly suggest that learning
the embeddings do possess high degrees of freedom in the
optimization, maybe even more than necessary, carrying
the risk of forming random neighbors for words in each
training instance. Our constraint pairs serve as a stabilizer
for avoiding these solutions.

In Figure 5, we project the word vectors to 2D space
using TSNE dimensionality reduction [30] and show how
the close proximity of a randomly sampled word (”feasible”
in this case) changes. The first row shows the results of the
SG model, and the second row shows vectors obtained with
our model. Each column shows the neighborhood of the
word and is obtained from a random training instance. The
circle radius’ indicates how many times a neighboring word
appears in all four training instances. We observe more
consistent neighbors when training includes our constraints,
and the number of stable neighbors is higher due to our con-
straints. Embeddings trained with our semantic constraints
favour stabilized solutions for all query sets compared to
the original embedding problem and might be also utilized
when the task of interest asks for large window dependency
modelling.

3.4 Word Similarity Measurements

We report the word similarity results of all trained embed-
dings both on the first 50M words that represent the scarce
data regime, and also on the full version of the Wikipedia
corpora representing the big data regime. Since our method
uses information from multiple lexical sources, we would
like to perform a fair comparison against all other baselines.
For this purpose, we also concatenate the collected dictio-
nary definitions and Thesaurus to the training data so that
other methods can also benefit from the information of these
extra sources. Wiki 50M denotes the raw training corpus
whereas Wiki 50M+ is the corpus with the aforementioned
dictionary and Thesaurus concatenations. To increase the
confidence of the experiments, we repeat each experiment
with different seeds and report the averages.

We test our embeddings on a large set of test collections.
As a standard extrinsic benchmark of [29], we compute
the Spearman Correlation Coefficient of cosine distances
of word pairs to measure how much embeddings can pre-
dict the expert annotated similarities. Since dataset overall
performance might also be interest, we also report the
weighted average result by weighting each dataset with its

8

query inventory size. Our test suite contains the following
datasets: MC-30 [31], MEN [32], MTurk-287 [33], MTurk-771
[34], RG65 [35], RW [36], SimVerb-3500 [37], WordSim-353
[38] and YP-130 [39].

Table 3 shows that for models trained on Wiki50M cor-
pus, the gain of our approach over FastText reaches 10.5%,
and Dict2Vec by 6.2% on dataset average. On a dataset basis,
our method obtains highest gains for SimVerb and YP-130
datasets. For models trained on the concatenated Wiki50M -+
corpus, other methods yield an average of 4.75% increased
performance, whereas our model obtains 1.2% extra on
the WikiS50M corpus. It turns out that concatenation of
dictionary and Thesaurus pairs from the semantic sources as
training input can benefit all models only for a few percents.
The contribution of our model is the largest for the RW and
Simverb datasets. Here, SimVerb contains many pairs for the
syntactic and semantic similarities of verb meanings. RW
dataset contains query pairs that are observed only a few
times in the corpus. We understand that leveraging pairwise
constraints helps most for learning the verb meanings, and
also for out of vocabulary queries. Our observations are
similar when training on the full version, except that a
few percents extra performance is obtained, with FastText
gaining the most from the concatenation routine.

Our approach leverages information from different
sources to learn the embeddings. On the surface, our
method exhibits similarities to Dict2Vec, which also lever-
ages information from lexical dictionaries. The reader must
note that there are few key distinctions in which Sem2Vec
deviates from such dictionary learning work. First, our work
focuses on combining multiple semantic informativeness
into the same learning framework whereas Dict2Vec aims
at introducing the dictionaries to word embedding learn-
ing optimally. In this sense, our purpose is to specialize
the vectors to semantics whereas Dict2Vec aims to obtain
vectors that have a balance between syntactic and semantic
accuracy. Secondly, Dict2Vec requires a pretraining stage
where they assume that initial word vectors are already
trained and available. This assumption is questionable since
the quality of the final embeddings heavily relies on how
well the initial pretrained embeddings are. A variation of
this multi-step approach is proposed in [40] which em-
beddings are further refined offline by a retrofitting step.
We deviate from such multi-step approaches that advocate
pretraining or postprocessing the word vectors. With our
learning framework, we avoid both approaches and train
the whole embedding pipeline in one-shot.

Word similarity results highlight that other word embed-
ding architectures can also enjoy the additional performance
when they are exposed to the dictionary and Thesaurus
content. Here we ask the question of whether treating these
semantic sources as samples are profitable. Is it sufficient
to apply sample duplications or extending the formulation
with our constraints is a necessity?
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Fig. 6: Word Similarity performances when semantic sources
are concatenated multiple times to the training corpus. The
gain for other embedding architectures quickly saturates.

We answer this question in Figure 6 where we simply
extract all pairs from dictionary and Thesaurus sources and
concatenate them multiple times to the available corpus. We
observe that the first few duplications raise the performance
greatly, but gain saturates around 10 duplications where
no additional benefit is observed. In contrast, duplications
serve as random noise fluctuations for our approach. We
conclude that treating these extra sources as sample du-
plications are an alternative approach to embed semantic
knowledge to the learning problem while introducing little
extra training time. However, the performance gain is far
away from optimal.

So far we assumed that the model has access to the
highest level semantic source during training. Under some
conditions, this assumption might be too optimistic since
for many languages these semantic sources might not be
either available or accessible. We name this condition as
economical scenario for the word embedding learning. In
Figure 7, we demonstrate how word similarity performance
varies when we are only left with a dictionary source and
lose access to the Thesaurus content. On all datasets, losing
access to the Thesaurus harms the performance. We observe
significant performance losses on the RW and SimVerb
datasets. Comparably, the drop is less significant for easy
datasets containing very frequent words such as RG-65 and
WSS. This suggests that learning word similarities can be
done using only lexical dictionaries, given that test sets
query relatively easy word pairs. On the other hand, if test
sets contain pairs that are rare, exploiting a higher level of
semantic source appears to be indispensable.
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Fig. 7: Word similarity performances when high level se-
mantic source is unavailable. Significant performance losses
are observed on the challenging RW and SimVerb datasets.
Losses are less significant for datasets with very frequent
words.

3.5 Document Text Classification

We follow the standard text classification evaluation simi-
larly to the [41] and evaluate our vectors on the Agnews [42]
dataset which was compiled from 2000 different text sources
providing news articles. It has documents of 4 classes,
randomly split into 120k training and 7k test documents.
Compared to Agnews, Dbpedia [43] dataset is a larger
corpus and has a split of 560k training documents and 70k
test documents from 14 classes.

For all baseline models, we train the vectors first on
the unsupervised corpora. We then construct document
representations by computing the average word vector of
each document. This document embedding is then plugged
as an input to a standard Multilayer Perceptron (MLP) with
a single hidden layer with ReLu activation functions on the
neurons. The network is then trained with the stochastic
ADAM optimizer [44] until convergence with an adaptively
decaying learning rate. To yield a fully fair comparison of
different word embedding vectors, we fix the embedding
weights and do not allow word vector layer to change
during the classification so that we can accurately quantify
the performance gain from each vector set.

As the performance measure, we report first the standard
F1-Score classification score:

F = 2precision x recall

precision + recall ©)
which can be interpreted as the harmonic mean of the
precision and recall. As, the prediction on the both Dbpedia
and Agnews datasets is a multi-class classification problem,
and there is almost no class imbalance in the test datasets,
Wwe use a macro averaging to compute a single F1 score. We
also report the Multi-class Receiver Operating Characteristic
(ROC) curves and Area under Curve (AUC) for each class
in the training sets.

Confusion matrices in Figure 8 show that objects from
Business and World classes in Agnews are relatively harder
where many false positives are encountered. The F1 scores
for both datasets are reported in the Figure 9. Addressing
the classification problem with our word vectors obtains
much higher performance compared to the baseline meth-
ods especially when the amount of data is relatively limited.
The ROC curves of Agnews dataset are reported in Figure
10.
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Fig. 9: F1 scores of the methods on the Agnews and Dbpedia classification datasets.
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Fig. 10: Multi-class Receiver Operating Characteristic (ROC) curves for each method in the Agnews dataset.
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Fig. 11: For visualization purposes, we project the document embeddings to two dimensions using T-SNE dimensionality
reduction. Each color corresponds to a particular document class in Agnews dataset. a) documents constructed with Skip
Gram vectors. b) documents constructed with FT vectors ¢) documents constructed with S2V vectors. Observe that not

only intra-class documents are grouped coherently with our vectors, but also inter-class distances are relatively higher.
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Fig. 12: Multi-class Receiver Operating Characteristic (ROC) curves for each method in the Dbpedia dataset.

For visualization purposes, we also project the document
representations constructed with different word vectors to
2D. In Figure 11, these low dimensional projections confirms
the ROC curve in Figure 10 that objects of the Business
class (teal colored) is the most difficult to classify. Here,
better representation for the classification requires intra-
class documents to be close to each other, and inter-class
distances to be higher.

We draw similar conclusions for Dbpedia dataset with
ROC curves in Figure 12. S2V clearly achieves higher true
positive rates. The lower dimensional plots in Figure 13

depict that our semantic constraints become indispensable
when the number of classes in the problem increase. Note
that the clutter is much prominent in Figure 13a-b, especially
in Company class (red points), the complexity of the classifi-
cation task is higher, showing the necessity of incorporating
semantic constraints. Despite the fact that these vectors were
not specifically trained for a classification setting, we are
able to achieve promising results with them.
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(a) SG-Dbpedia

(b) FT-Dbpedia
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(c) S2V-Dbpedia

Fig. 13: For visualization purposes, we project the document embeddings to two dimensions using T-SNE dimensionality
reduction. Each color corresponds to a particular document class in Dbpedia dataset. a) documents constructed with Skip
Gram vectors. b) documents constructed with FT vectors ¢) documents constructed with S2V vectors. Observe that not
only intra-class documents are grouped coherently with our vectors, but also inter-class distances are relatively higher.

4 CONCLUSION

In this work, we proposed a novel embedding framework
to learn word vectors specializing in semantics. Our word
embedding pipeline integrated various levels of semantic
sources into one unified formulation by treating highly
informative lexical sources as heavy constraints, and lexical
dictionaries as light constraints to learning. We then utilized
the domain knowledge inherent in the lexical sources to
further refine our constraint sets by bidirectional constraint
propagations, yielding a smoother and better behaving ob-
jective function.

Our semantically constrained embedding formulation is
notably more stable than the typical word embeddings, es-
pecially for training settings on the large window sizes. This
is an attractive property, and closes the gap between perfor-
mance and stability in the field of embeddings. We also em-
pirically evaluated how much gain our model provides for
word similarity measurements when trained under scarce
and big training data. The practical contribution of our
model on the word similarity test suite of eleven datasets
is measured, showing significant improvements over the
state of the art techniques. Our findings on incorporating
semantic knowledge are also supported by the limitations
of sample duplication, further supplemented the necessity
of a constraint based formulation. Lastly, worst-case eco-
nomic scenarios in which a semantic source is unavailable
is investigated and performance losses are discussed, posing
the limitations of our approach.

Perhaps notable merit of our formulation is that it in-
tegrates semantic knowledge to the features but follows the
conventional word embedding pipeline where training does
not require any human in the loop. This is an important
remark to obtain vectors in a manageable time since most
of the embedding architectures require a human in the loop,
which in return significantly slows down the training proce-
dure. Following our experimental evaluation, we conclude
that in contrast to our method, state of the art vectors do
not have a strong guarantee to learn semantic relevancies
especially when the amount of training data is scarce for
the given language. Sem2Vec not only provides stability of
the end results but also maintains the time-efficiency of the

embedding training since the complexity does not increase
greatly with the number of constraints.
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